
Kosmas Kosmopoulos Application development with XML and Java

Application Development Application Development
with XML and Javawith XML and Java

Lecture 3
Introduction to SAX, DOM,

JAXP

Kosmas Kosmopoulos Application development with XML and Java

SAXSAX

• SAX is unique among XML APIs in that
it models the parser rather than the
document.
– The parser is represented as an instance of the

XMLReader interface.
– The specific class that implements this

interface varies from parser to parser.
– Most of the time you only access it through

the common methods of the XMLReader
interface.

• A parser reads a document from
beginning to end. As it does so it
encounters start-tags, end-tags, text,
comments, processing instructions, and
more. In SAX, the parser tells the client
application what it sees as it sees it by
invoking methods in a ContentHandler
object. ContentHandler is an interface the
client application implements to receive
notification of document content.

Kosmas Kosmopoulos Application development with XML and Java

ContentHandlerContentHandler

• The client application will instantiate a
client-specific instance of the
ContentHandler interface and register
it with the XMLReader that’s going to
parse the document. As the reader
reads the document, it calls back to
the methods in the registered
ContentHandler object.

• The second example is a simple SAX
program that communicates with the
XML-RPC service It sends the
request document using basic output
stream techniques and then receives
the response through SAX.

Kosmas Kosmopoulos Application development with XML and Java

SAX ExampleSAX Example

• Since SAX is a read-only API, we are using
the same code as before to write the request
sent to the server.

• The code for reading the response, however,
is different. Rather than reading directly from
the stream, SAX bundles the InputStream in
an InputSource, a generic wrapper for all the
different things an XML document might be
stored in— InputStream, Reader, URL, File,
etc. This InputSource object is then passed to
the parse() method of an XMLReader.

• Several exceptions can be thrown at various
points in this process. For instance, a
IOException will be thrown if the socket
connecting the client to the server is broken.
A SAXException will be thrown if the
org.apache.xerces.parsers.SAXParser class
can’t be found somewhere in the class path.

• There’s no code in this class to actually find
the double response and print it on the
console. Yet, when run it produces the
expected response:
C:\XMLJAVA>java FibonacciSAXClient 42
267914296

Kosmas Kosmopoulos Application development with XML and Java

DOMDOM

• The Document Object Model, DOM, is a
tree-based API

• DOM programs start off similarly to SAX
programs, by having a parser object read an
XML document from an input stream or
other source.

• SAX parser returns the document broken up
into a series of small pieces, DOM method
returns an entire Document object that
contains everything in the original XML
document.

• Information is read from the document by
invoking methods on this Document object
or on the other objects it contains. This
makes DOM much more convenient when
random access to widely separated parts of
the original document is required.

• It is memory intensive compared to SAX. It
is not as well suited to streaming applications

• A second advantage to DOM is that it is a
read-write API. Whereas SAX can only parse
existing XML documents, DOM can also
create them.

Kosmas Kosmopoulos Application development with XML and Java

DOM Example DOM Example

• Example 2 is a DOM-based program for
connecting to the Fibonacci XML-RPC
servlet. The request is formed as a new
DOM document. The response is read as a
parsed DOM document.

• In DOM the request document is built as a
tree. Everything in the document is a node
in this tree including text nodes, comments,
processing instructions and more.

• Once the Document object has been
created and populated, it needs to be
serialized onto the URLConnection’s output
stream.

• When the server receives and parses the
request, it calculates and transmits its
response as an XML document.

• This document must be parsed to extract
the single string we actually want. DOM
includes a number of methods and classes
to extract particular parts of a document
without necessarily walking down the entire
tree.

Kosmas Kosmopoulos Application development with XML and Java

DOM IssuesDOM Issues

• It’s a little complex, even for very simple
problems like this one. However, DOM
does have an internal logic; and once you
become accustomed to it, you’ll find it’s
actually not that hard to use.

• The second downside to DOM is that it
does not expose as much of the information
in an XML document as SAX does. These
include unparsed entities, notations,
attribute types, and declarations in the
DTD. Some of this will be provided in
DOM Level 3.

• The third downside to DOM is that it’s not
as complete as SAX. Much of the code in
the Example is actually part of the Xerces
parser rather than standard DOM. Such
parser specific code is virtually impossible to
avoid when programming in DOM because
DOM doesn’t give you any way to create a
new XML document, create a new parser, or
write a Document onto an output stream.

Kosmas Kosmopoulos Application development with XML and Java

JAXPJAXP

• In Java 1.4, the Crimson XML parser and the
SAX2, DOM2, and TrAX APIs are bundled
into the standard Java class library. Also a
couple of factory classes were included, this
is called “Java API for XML Processing”.

• When starting a new program the question is
whether to choose SAX or DOM. The
question is not whether we should use SAX
or JAXP, or DOM or JAXP. SAX and DOM
are part of JAXP. If we know SAX, DOM,
and TrAX, we know 99% of JAXP.

• The only public part of JAXP that isn’t part
of its component APIs are the factory classes
in javax.xml.parsers. These can be used to
create new documents in memory and load
documents from text files and streams.

• Example 3 is a JAXP client for the XML-
RPC server. All the DOM standard code is
the same as before except the parser-
dependent parts from the org.apache
packages

Kosmas Kosmopoulos Application development with XML and Java

JAXP ExampleJAXP Example

• The request document is built again as a
tree. This time a DocumentBuilderFactory
from JAXP does the building instead of the
Xerces-specific

• When it becomes time to serialize the
Document, the JAXP solution again
diverges. Here, FibonacciDOMClient used
Xerces-specific classes.
FibonacciJAXPClient uses TrAX..

• Finally, parsing the server response is much
the same as before. However, this time
instead of using the Xerces-specific
DOMParser class, we use the same
DocumentBuilder that created the request
document.

• DocumentBuilder may delegate the parsing
to Xerces anyway, depending on which
classes are where in your class path, and
how certain environment variables are set.
However, there’s no need for code at this
level to know that implementation detail.

Kosmas Kosmopoulos Application development with XML and Java

SAX in DetailSAX in Detail

• The Simple API for XML, SAX, was
invented in late 1997/early 1998

• SAX was designed around abstract interfaces
rather than concrete classes so it could be
layered on top of parsers’ existing native
APIs.

• The ease with which SAX could be
implemented by many parser vendors with
very different architectures contributed to its
success and rapid standardization.

• SAX has been unofficially ported to several
other object oriented languages including
C++, Visual Basic, Python, and Perl. The
general patterns and names of most
functions remain the same.

• In late 1999, work began on SAX2. This was
a radical reformulation of SAX that, while
maintaining the same basic event-oriented
architecture, replaced almost every class in
SAX1. The main impetus for this radical
shift was the need to make SAX namespace
aware.

Kosmas Kosmopoulos Application development with XML and Java

SAX ParsingSAX Parsing

• Parsing is the process of reading an XML
document and reporting its content to a
client application while checking the
document for well-formedness.

• SAX represents parsers as instances of the
XMLReader interface. The specific class that
implements this interface varies from parser
to parser.
– For example, in Xerces it’s

org.apache.xerces.parsers.SAXParser.
– In Crimson it’s

org.apache.crimson.parser.XMLReaderImpl.
• Most of the time you don’t construct

instances of this interface directly. Instead
you use the static
XMLReaderFactory.createXMLReader()
factory method to create a parser-specific
instance of this class.

• Then you pass InputSource objects
containing XML documents to the parse()
method of XMLReader. The parser reads the
document, and throws an exception if it
detects any well-formedness errors

Kosmas Kosmopoulos Application development with XML and Java

Parsing ExampleParsing Example

• Example 4 demonstrates the complete
process with a simple program whose
main() method parses a document found
at a URL entered on the command line.
If this document is well-formed, a simple
message to that effect is printed on
System.out.

• Otherwise, if the document is not well-
formed, the parser throws a
SAXException.

• If an I/O error such as a broken
network connection occurs, then the
parse() method throws an IOException.
In this case, you don’t know whether or
not the document is well-formed.

• This program’s output is straightforward.
For example:

%java SAXCheckerhttp://www.cafeconleche.org
http://www.cafeconleche.org is well-

formed.

Kosmas Kosmopoulos Application development with XML and Java

ErrorsErrors

• However, some readers will encounter a
different result when they run this program.
In particular, you may get this output:

%java SAXChecker
http://www.cafeconleche.org

org.xml.sax.SAXException: System
property org.xml.sax.driver not
specified

• What this really means is that the parser has
not properly customized its version of the
XMLReaderFactory class. Parsers including
Xerces and Crimson fail to do this.
Consequently we need to set the
org.xml.sax.driver Java system property to
the fully package-qualified name of the Java
class.
– For Xerces, it’s

org.apache.xerces.parsers.SAXParser.
– For Crimson, it’s

org.apache.crimson.parser.XMLReaderImpl.
– For other parsers, consult the parser

documentation.

Kosmas Kosmopoulos Application development with XML and Java

ErrorsErrors

• You can specify a one-time value for this
property using the -D flag to the Java
interpeter like this:

%java -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser SAXCheckerhttp://www.cafeconleche.org/
http://www.cafeconleche.org is well-

formed.

Kosmas Kosmopoulos Application development with XML and Java

Content HandlerContent Handler

• The ContentHandler interface declares
eleven methods. As the parser—that is, the
XMLReader—reads a document, it invokes
the methods in this interface.

• When the parser reads
– a start-tag, it calls the startElement() method.
– some text content, it calls the characters()

method.
– an end-tag, it calls the endElement() method.
– a processing instruction, it calls the

processingInstruction() method.
• The details of what the parser’s read, e.g. the

name and attributes of a start-tag, are passed
as arguments to the method.

• Order is maintained throughout. That is, the
parser always invokes these methods in the
same order it sees items in the document.

• For example, the parser calls the
startElement() method as soon as it’s read a
complete start-tag. It will not read past that
start-tag until the startElement() method has
returned.

Kosmas Kosmopoulos Application development with XML and Java

ImplementationImplementation

• An example should help make this clearer.
We are going to write a very simple program
that extracts all the text content from an
XML document while stripping out all the
tags, comments, and processing instructions.

• This will be divided into two parts, a class
that implements ContentHandler and a class
that feeds the document into the parser.

• Example 5 is the class that implements
ContentHandler. It has to provide all eleven
methods declared in ContentHandler.

• However, the only one that’s actually needed
is characters(). The other ten are do-nothing
methods.

• When the parser reads content between tags,
it passes this text to the characters() method
inside an array of chars. The index of the
first character of the text inside that array is
given by the start argument. The number of
characters is given by the length argument.
In this class, the characters() method writes
the sub-array of text from start to
start+length onto the Writer stored in the
out field.

Kosmas Kosmopoulos Application development with XML and Java

ImplementationImplementation

• By itself the TextExtractor class does
nothing. There’s no code in the class to
actually invoke any of the methods or parse a
document. Although code to do this could
be placed in a main() method in
TextExtractor, you caould place it in a class
of its own called ExtractorDriver which is
shown in Example 6.

• The main() method in this class performs the
following steps:
1. Build an instance of XMLReader using the

XMLReaderFactory.createXMLReader()
method.

2. Construct a new TextExtractor object.
3. Pass this object to the setContentHandler()

method of the XMLReader.
4. Pass the URL of the document you want to

parse (read from the command line) to the
XMLReader’s parse() method.

• There’s still no code that actually invokes the
characters() or any other method in the
TextExtractor class! The code that actually
calls these methods is hidden deep inside the
class library.

Kosmas Kosmopoulos Application development with XML and Java

Ignorable white spaceIgnorable white space

• One of the more obscure parts of the XML
1.0 specification is the perhaps misleadingly
named “ignorable white space”. This is white
space that occurs between tags in places
where the DTD does not allow mixed
content. For example :

<?xml version="1.0"?>
<!DOCTYPE methodCall [
<!ELEMENT methodCall (methodName,params)>
<!ELEMENT params (param+)>
<!ELEMENT param (value)>
<!ELEMENT value (string)>
<!ELEMENT methodName (#PCDATA)>
<!ELEMENT string (#PCDATA)>
]>
<methodCall> <methodName>lookupSymbol</methodName>

<params>
<param>

<value>
<string>
Red Hat </string>

</value>
</param>

</params>
</methodCall>

Kosmas Kosmopoulos Application development with XML and Java

Ignorable white spaceIgnorable white space

• This example has quite a bit of white
space just for indenting. In particular, the
spaces, carriage returns, and line feeds
between <methodCall> and
<methodName>, </methodName> and
<params>, <params> and <param>,
<param> and <value>, </value> and
</param>, </param> and </params>,
and </params> and </methodCall>
only exist for indenting.

• Furthermore, the DTD says that these
elements cannot contain #PCDATA,
and therefore it’s known that this white
space is ignorable. Thus a validating
parser will not pass these white space
characters to the characters() method.
Instead it passes them to the
ignorableWhiteSpace() method.

• A non-validating parser might do the
same, or it might pass the ignorable
white space to the characters() method
instead.

• If this matters, make sure you use a
validating parser.

Kosmas Kosmopoulos Application development with XML and Java

Further ExercisesFurther Exercises

• Have a look at:
http://www.cafeconleche.org/books/xmljava/

chapters/ch06s05.html

Try to implement the user interface. Copy the
example and try to run it.

Kosmas Kosmopoulos Application development with XML and Java

DOMDOM

• The Document Object Model, DOM for short,
is an abstract data structure that represents XML
documents as trees of nodes.

• Different interfaces in the org.w3c.dom package
represent elements, attributes, parsed character
data, comments, and processing instructions.
– The root of the tree is a Document object that

represents a complete well-formed document.
– A parser reads an XML document from a stream

and builds a Document object representing that
XML document.

– The client program calls the methods of
Document and the other DOM interfaces to
navigate the tree and extract information from
the document.

– Programs can even create completely new
documents from scratch in memory which are
then written into an XML file.

Kosmas Kosmopoulos Application development with XML and Java

Historical OverviewHistorical Overview

• DOM is language neutral.
• DOM bindings exist for most OO languages

including Java, JavaScript, C++, and Perl.
• DOM 0 only applied to HTML documents

and only in the context of JavaScript.
• DOM 1 achieved some level of compatibility

across browsers. The naming conventions
feel a little wrong to a Java programmer, but
DOM 1 does provides a solid core of
functionality that covers maybe 75% of what
programmers want to do when processing
XML.

• DOM Level 2 cleaned up the DOM Level 1
interfaces. The big change was namespace
support in the Element and Attr interfaces.

• All significant XML parsers that support
DOM, support DOM Level 2.

• DOM Level 3 is is also going to add a lot
more support for DTDs and schemas. But
despite all its new features and functionality,
DOM3 will not replace DOM2. Everything
that works today in DOM2 will continue to
work the same way in DOM3.

Kosmas Kosmopoulos Application development with XML and Java

DOM ModulesDOM Modules

DOM2 is divided into 14 modules in 8
different packages.

Core: org.w3c.dom
• The basic interfaces that can be used to

represent any SGMLish, hierarchical tree-
structured document

XML: org.w3c.dom
• The additional sub-interfaces of Node just for

XML documents including
HTML: org.w3c.dom.html
• Interfaces designed specifically to represent the

parts of an HTML document
Views: org.w3c.dom.views
• The AbstractView and DocumentView

interfaces used to associate different views with
one document. For instance, applying two style
sheets to one XML document could produce
two views.

StyleSheets: org.w3c.dom.stylesheets
• Basic interfaces for representing style sheets
CSS: org.w3c.dom.css
• Interfaces that specifically represent CSS style

sheets Kosmas Kosmopoulos Application development with XML and Java

DOM ModulesDOM Modules

CSS2: org.w3c.dom.css
• Provides shortcut methods for setting all

the different CSS2 style properties.
Events: org.w3c.dom.events

• The interfaces in these classes establish a
generic system that allows event listeners
to be attached to nodes. Events nodes
can respond to user interface events like
mouse clicks, etc.

UIEvents: org.w3c.dom.events
• The UIEvent interface signals when a

node represented on the screen in some
form of GUI has received the focus, lost
the focus, or been activated.

MouseEvents: org.w3c.dom.events
• The MouseEvent interface signals when,

where, and with which keys pressed the
user has clicked the mouse.

MutationEvents: org.w3c.dom.events
• It signals that a node has been added,

removed, or modified in the document.

Kosmas Kosmopoulos Application development with XML and Java

DOM ModulesDOM Modules

HTMLEvents: org.w3c.dom.events
• Uses the base DOMEvent interface to

report a dozen events specific to web
browsers including load, abort, error,
submit, reset, resize, scroll, etc

Traversal: org.w3c.dom.traversal
• Provides simple utility classes for performing

common operations on a tree such as
walking the entire tree or filtering out nodes
that meet certain conditions.

Range: org.w3c.dom.ranges
• This extends DOM to cover sections of

documents that don’t neatly match element
boundaries. For instance, it would be useful
for indicating the section of text that the
user has selected with the mouse.

• Aside from the core and XML
modules, not all DOM
implementations support all of these
modules.

• Most Java implementations do support
the traversal module. The events module
is not uncommon.

Kosmas Kosmopoulos Application development with XML and Java

Application SpecificApplication Specific

• A number of XML applications have built
useful application-specific DOMs by
extending the standard DOM interfaces.

• Where the generic DOM would use an
Element object, a WML-specific DOM
might use a WMLOptionElement or a
WMLPElement or a
WMLPostfieldElement object, as
appropriate for the actual type of element
it represents.

• These custom subclasses and subinterfaces
have all the methods and properties of the
standard interfaces, as well as other
methods and properties appropriate only
for their type.

• For example, A WML p element has align,
mode, and xml:lang attributes, like this:
<p align="center" mode="wrap"
xml:lang="en"> Hello! </p>

• Therefore, the WMLPElement interface
has getter and setter methods for those
three attributes

Kosmas Kosmopoulos Application development with XML and Java

public void setMode(String mode);
public void setAlign(String align

);
public void setXMLLang(String lan

g);
public String getMode();
public String getAlign();
public String getXMLLang();
• An application specific DOM can

enforce application specific rules such as
“The mode attribute must have one of
the values wrap or nowrap,” though
currently this isn’t very common.

• The big issue for most of the application
specific DOMs is parser support. To
read these documents, we need not only
a custom DOM but also a custom parser
that knows how to generate the
application specific DOM. That’s a little
harder to come by.

• With some effort, the Xerces DOM
parser can be configured to produce
HTML DOM Document objects for
well-formed HTML and XHTML.

Kosmas Kosmopoulos Application development with XML and Java

TreesTrees

• According to DOM, an XML
document is a tree made up of nodes
of several types.

• The tree has a single root node, and
all nodes in this tree except for root
have a single parent node.

• Furthermore, each node has a list of
child nodes. In some cases, this list of
children may be empty, in which case
the node is called a leaf node.

• There can also be nodes that are not
part of the tree structure. For
instance, each attribute node belongs
to one element node but is not
considered to be a child of that
element.

• Recursion works very well on DOM
data structures, as it does on any tree.

Kosmas Kosmopoulos Application development with XML and Java

TreesTrees

• Besides its tree connections, each node has a
local name, a namespace URI, and a prefix;
though for several kinds of nodes, these may
be null.

• Each node also has a node name.
– For an element or attribute, the node name is the

prefixed name.
– For other named things like notations or entities,

the node name is the name of the thing.
– For nodes without names such as text nodes, the

node name is the value from the following list
matching the node type:

#document
#comment
#text
#cdata-section
#document-fragment

• Finally each node has a string value. For like
text nodes and comments, this tends to be
the text of the node. For attributes, it’s the
normalized value of the attribute. For
everything else, including elements and
documents, the value is null.

Kosmas Kosmopoulos Application development with XML and Java

Node TypesNode Types

• DOM divides nodes into twelve types,
seven of which can potentially be part
of a DOM tree:
– Document nodes
– Element nodes
– Text nodes
– Attribute nodes
– Processing instruction nodes
– Comment nodes
– Document type nodes
– Document fragment nodes
– Notation nodes
– CDATA section nodes
– Entity nodes
– Entity reference nodes

• However, of these twelve, the first
seven are by far the most important;
and a tree built by an XML parser will
often contain only the first seven.

Kosmas Kosmopoulos Application development with XML and Java

ExampleExample

<?xml version="1.0"?>
<?xml-stylesheet type="text/css"href="xml-rpc.css"?>
<!-- It's unusual to have an xml-stylesheet processing instruction in an XML-RPC document but it is legal, unlike SOAP where processing instructions are forbidden. -->
<!DOCTYPE methodCall SYSTEM "xml-rpc.dtd">
<methodCall> <methodName>getQuote</methodName> <params>

<param> <value><string>RHAT</string>
</value>
</param>

</params>
</methodCall>
• The document node representing the root

of this document has four child nodes in
this order:
– A processing instruction node for the xml-

stylesheet processing instruction
– A comment node for the comment
– A document type node for the document

type declaration
– An element node for the root methodCall

element
Kosmas Kosmopoulos Application development with XML and Java

Element NodesElement Nodes

• Each element node has a name, a local
name, a namespace URI and a prefix.It
also contains children.

For example, consider this value element:
<value><string>RHAT</string></value>
• When represented in DOM, it becomes a

single element node with the name value.
This node has a single element node
child for the string element. Thie string
element node has a single text node child
containing the text RHAT.

Or consider this para element:
<db:para

xmlns:db="http://www.example.com/"
xmlns="http://namespaces.cafeconle
che.org/"> Or consider this
<markup>para</markup> element:
</db:para>

Kosmas Kosmopoulos Application development with XML and Java

Example cont.Example cont.

• In DOM it’s represented as an
element node with the name db:para,
the local name para, the prefix db, and
the namespace URI
http://www.example.com/. It has
three children:
– A text node containing the text Or

consider this
– An element node with the name markup,

the local name markup, the namespace
URI
http://namespaces.cafeconleche.org/,
and a null prefix.

– Another text node containing the text
element:.

• White space is included in text nodes,
even if it’s ignorable.

Kosmas Kosmopoulos Application development with XML and Java

Attribute NodesAttribute Nodes

• An attribute node has a name, a local
name, a prefix, a namespace URI, and a
string value.

• The value is normalized as required by the
XML 1.0 specification. That is, entity and
character references in the value are
resolved, and all white space characters are
converted to a single space.

• An attribute node also has children, all of
which are text and entity reference nodes
forming the value of the attribute.

• Attributes are not considered to be children
of the element they’re attached to. Instead
they are part of a separate set of nodes.

For example, consider this Quantity element:
<Quantity amount="17" />

• This element has no children, but it does
have a single attribute with the name
amount and the value 17.

Kosmas Kosmopoulos Application development with XML and Java

Leaf NodesLeaf Nodes

• Only document, element, attribute, entity,
and entity reference nodes can have
children. The remaining node types are
much simpler.

Text nodes
• Text nodes contain character data from the

document stored as a String. Characters like
& and < that are represented in the
document by predefined entity or character
references are replaced by the actual
characters they represent.

Comment nodes
• A comment node has a name (which is

always #comment), a string value (the text
of the comment) and a parent (the node that
contains it). That’s all. For example,
consider this comment:
<!-- Don't forget to fix this! -->

• The value of this node is Don't forget to fix
this! . The white space on either end is
included.

Kosmas Kosmopoulos Application development with XML and Java

DOM ParsersDOM Parsers

• DOM is defined almost completely in
terms of interfaces rather than classes.

• Different parsers provide their own
custom implementations of these
standard interfaces. This offers a great
deal of flexibility.

• DOM isn’t quite as broadly supported as
SAX, but most of the major Java parsers
provide it including Crimson, Xerces,
XML for Java, the Oracle XML Parser for
Java, and GNU JAXP.

• DOM is not complete to itself. Almost all
significant DOM programs need to use
some parser-specific classes.

• DOM programs are not too difficult to
port from one parser to another, but a
recompile is normally required.

• JAXP, the Java API for XML Processing,
fills in a few of the holes in DOM by
providing standard parser independent
means to parse existing documents, create
new documents, and serialize in-memory
DOM trees to XML files.

Kosmas Kosmopoulos Application development with XML and Java

ExampleExample

• Because DOM depends so heavily on parser
classes, its performance characteristics vary
widely from one parser to the next.

• Speed is something of a concern, but
memory consumption is a much bigger issue
for most applications. Almost all DOM
implementations use more space for the in-
memory DOM tree than the actual file on
the disk occupies. Generally the in-memory
DOM trees range from three to ten times as
large as the actual XML text.

• Some parsers including Xerces offer a “lazy
DOM” that leaves most of the document on
the disk, and only reads into memory those
parts of the document the client actually
requests.

• Example 1 is a simple program that uses
Xerces to check documents for well-
formedness. You can see that it depends
directly on the
org.apache.xerces.parsers.DOMParser class.

Kosmas Kosmopoulos Application development with XML and Java

JAXP ExampleJAXP Example

• The lack of a standard means of parsing an
XML document is one of the holes that
JAXP fills. If your parser implements JAXP,
then instead of using the parser-specific
classes, you can use the
javax.xml.parsers.DocumentBuilderFacto
ry and
javax.xml.parsers.DocumentBuilder
classes to parse the documents.

The basic approach is as follows:
– Use the static

DocumentBuilderFactory.newInstance()
factory method to return a
DocumentBuilderFactory object.

– Use the newDocumentBuilder() method
of this DocumentBuilderFactory object to
return a parser-specific instance of the
abstract DocumentBuilder class.

– Use one of the five parse() methods of
DocumentBuilder to read the XML
document and return an
org.w3c.dom.Document object.

• Example 2 uses JAXP to check documents
for well-formedness.

Kosmas Kosmopoulos Application development with XML and Java

The node interfaceThe node interface

• If you have time try examples 9.8
and 9.11 from:

http://www.cafeconleche.org/b
ooks/xmljava/chapters/ch09s07.
html

